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Role of Parallelism in Ambulance Dispatching
Seokcheon Lee

Abstract—The demand for emergency medical service (EMS)
has been rising over time, leading to the need for effi-
cient yet effective techniques for managing ambulance logistics.
Ambulance dispatching decisions in EMS assign ambulances to
calls such that the response time is minimized. A notion of
parallelism is developed for ambulance dispatching decisions that
allows considering both idle and busy ambulances in parallel
rather than just idle ones. The parallelism, applied upon the
centrality policy found in literature, results in the parallelized
centrality policy complementing and enhancing the centrality
policy. The experimental analysis evidences that the parallelism
significantly reduces response time by up to 43.4% over the
existing approaches that only consider idle ambulances.

Index Terms—Ambulance dispatching, emergency medical
service, parallelism, response time.

I. Introduction

THE DEMAND for emergency medical service (EMS) has
been rising over time [see Fig. 1 for the number of emer-

gency department (ED) visits by ambulance between 2003 and
2010 in the U.S.], leading to the need for efficient yet effective
techniques for managing ambulance logistics. Response time,
which is significantly influenced by the ambulance logistics,
is the time taken to reach patient after an emergency call is
received, and it has been used as an important performance
measure since it directly affects the welfare and safety of
patients. For example, sudden cardiac arrest is a leading cause
of deaths in the U.S., responsible for more than 350 000 deaths
each year [2]. The effect of a 1 m reduction in response time
for patients with sudden cardiac arrest is estimated to increase
survival rate by 24% [3].

Three types of ambulance logistics decisions are associated
with the response time: 1) ambulance location; 2) ambulance
relocation; and 3) ambulance dispatching. First, ambulance
location problems involve establishing optimal locations of
ambulance stations in terms of coverage (see [4]–[7] for
detailed reviews). Coverage is the fraction of calls that can
be responded within a time limit, assuming a demand node is
covered by an ambulance station if the time length between
them is within the time limit. Second, relocation decisions
enforce ambulances to move to different locations in order
to increase the coverage based on temporal and geographical
demand patterns [8]–[13].
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Fig. 1. ED visits by ambulance, 31% increase in 7 years and 4% increase
annually [1].

Lastly, ambulance dispatching decisions assign ambulances
to calls, which can be either call-initiated or ambulance-
initiated [14], [15]. When a newly arriving call finds several
idle ambulances, it initiates a decision of selecting a unit
(ambulance) among idle units (call-initiated). If calls cannot
be immediately assigned, they start being queued and a unit
that has just got freed has to choose a call among those
waiting, thereby initiating a dispatching decision (ambulance-
initiated). The relevance of the two types of dispatching
decisions depends on the busyness of the system. Call-initiated
decisions are more relevant in routine emergency scenarios
where system load is relatively low, whilst ambulance-initiated
decisions play a primary role in high load conditions.

A greedy policy, dispatching the closest unit available or
dispatching to the closest call waiting, can be used for the two
types of dispatching decisions. The greedy policy, due to the
computational efficiency and at the same time the capability of
achieving a certain level of effectiveness, is most commonly
used in EMS practice [13], [16]–[18], and it is also widely
adopted in various other applications [19]–[26].

In a recent research, Lee [14], [15] introduced a novel
ambulance dispatching policy for ambulance-initiated
decisions, centrality policy, in response to the rising occurrence
of catastrophic disasters that the world has been experiencing.
If a patient chosen is located away from the rest of patients, the
next response times will tend to increase. The centrality policy,
therefore, prioritizes calls based on the so-called centrality that
can be interpreted as the efficiency of a call site in reaching
out other calls or the density of calls around a call with
respect to the geographical call distribution over the service
area. The experimental results show that the centrality policy
reduces response time by up to 86% over the greedy policy.
The centrality consideration is from the recognition of the fact
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that a large portion of incidents are managed on site without
need for transport to hospital. For example, the percentage
of essential emergency calls that require transferring to
hospital is reported to be only 25% in the U.S. [27]. In
contrast, the statistics collected by the U.K. Department of
Health, during April 2012 to February 2013, from different
regions of U.K., state that the percentage varies from
46–78% (http://www.england.nhs.uk/statistics/ambulance-
quality-indicators/ambqi-2012-13/). This implies that it is
highly possible that a unit continues serving several calls
before having to go to hospital. Therefore, the centrality can
play an important role in guiding dispatching decisions and
reducing response time.

The greedy policy and centrality policy, however, take
into account only idle units in making dispatching decisions,
despite the possibility that a busy unit can respond more
quickly even after the completion of currently assigned ser-
vice. It would therefore be possible to further improve these
policies by incorporating both idle and busy units in parallel.
The parallelism blurs the boundary between call-initiated and
ambulance-initiated decisions, and an assignment problem in
either case has to be solved that matches between multiple
(idle/busy) units and multiple unassigned calls. This paper
aims to propose a method of synthesizing the parallelism
into the centrality policy, producing a novel policy called
parallelized centrality policy, and demonstrate the impact of
the parallelism on performance improvement. The analysis
evidences that the parallelism can significantly reduce the
average as well as variation of response time beyond existing
approaches that only consider idle units, thus mitigating the
risk of exposing patients to excessively tardy responses.

The rest of this paper is organized as follows. Section II
introduces the centrality policy to which the parallelism is
applied. The centrality policy is transformed into the par-
allelized centrality policy in Section III, and the impact of
parallelism is evaluated in various scenarios in Section IV. In
Section V, the parallelized centrality policy is more generalized
by incorporating calibration parameters, based on the lessons
from the experimental analysis. Finally, Section VI concludes
this paper and discusses future work.

II. Centrality Policy

This section introduces the centrality policy that is recently
developed by Lee [14], [15] in support of ambulance-initiated
dispatching decisions, as a basis to which the parallelism prin-
ciple is integrated. When an ambulance gets freed, a network
can be constructed where nodes represent waiting calls that
have not been assigned to any unit and an edge between every
pair of calls has a value of distance (in time) between the two
call sites connected by the edge. Node centrality in a network
indicates the importance of a node in the operational efficiency
of the network [28], [29], and this network representation of
calls facilitates quantifying the centrality of calls. When calls
are prioritized by the centrality and a unit is dispatched to
the most central call, the unit will be given the opportunity,
after the completion of immediate service, to serve the other
calls around it at the maximum rate of completion. However,

if calls are prioritized only by the centrality, the units would
travel excessively just to reposition themselves in central nodes
without enough exploitation of calls in vicinity. Therefore, it is
undesirable to use the centrality alone for dispatching decision
and the centrality has to be combined with a measure that
provides the capability of local exploitation. The closeness
that is used in the greedy policy is an appropriate measure as
it enables to pursue minimizing each current response time.
Now, if calls are prioritized by centrality and closeness at the
same time, units can be equipped with both global exploration
capability and local exploitation capability.

Based on the background briefly described above, the cen-
trality policy is formed in four steps as follows.

1) When an ambulance v gets freed, identify all unassigned
calls U.

2) Compute centrality cu of each call u ∈ U upon the
network of calls U with the edge between every pair
of calls having a value of distance τui (in time) between
them

cu =
∑

i∈U,i�=u

1

(1 + τui)
. (1)

3) Compute fitness f vu between the freed unit v and a call
u ∈ U based on the centrality cu weighted by parameter
α (≥0) and expected response time tvu for the unit v to
reach the call site u

fvu =
cα
u

(1 + tvu)
. (2)

4) Dispatch the freed unit v to the call u∗ that maximizes
the fitness

u∗ = arg max
u∈U

fvu. (3)

The centrality cu in step 2 is represented by weighted degree
among others due to its computational efficiency appropriate
to the real-time decisions and due to its ability of producing
robust performance in various operational scenarios (see [14]
for details). The weighted degree of a node is computed by the
sum of the weights of connected edges when higher weight
values are preferred (e.g., capacity and strength) [30], [31].
However, the weight in the call network represents distance
and lower weight values are preferred. The weighted degree
in this case is computed by the sum of the reciprocals of
weights.

A calibration parameter in step 3, weight on centrality α,
is associated with the centrality policy. The centrality policy
is exactly same as the greedy policy when α = 0; however,
when the weight is positive the policy incorporates centrality
into decision by the extent corresponding to the weight.
As indicated in [14], the weight value has to be carefully
chosen according to the operating environment; even a small
weight value gives significant benefits but the performance
gets considerably degraded if the weight is too large. Lee [15]
provides a heuristic approach for choosing the weight value as
follows. One crucial characteristic of ambulance dispatching
is the uncertainty involved in the need for transferring patient
to hospital, as mentioned before. The choice of the weight
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Fig. 2. Illustrative example of parallelized centrality policy. (a) a3 gets freed (edge length = 1 m). (b) Centrality. (c) Expected response time (hospi-
tal−prob = 0.7). (d) Fitness (α = 0.3). (e) a3 is dispatched to c5 or c6.

value will be affected by the probability of transferring as
it determines the relevance of centrality consideration, i.e.,
the centrality will be more relevant when the probability is
lower. The probability of transferring to hospital is denoted
as hospital−prob. As the hospital−prob approaches zero, the
centrality plays a more important role because of the higher
possibility of continuing onsite services without transferring to
hospital. On the other hand, if it approaches one, the role of
centrality diminishes as the unit is more likely to go to hospital
before serving next call. Therefore the usefulness of centrality
is determined by the hospital−prob and thus 1− hospital−prob
is used as the weight on centrality.

The centrality policy is designed specifically for ambulance-
initiated dispatching decisions. However, for the sake of com-
pleteness of a policy and to facilitate integrating the parallelism
principle, let us assume that the centrality policy adopts a
greedy approach for call-initiated decisions, i.e., when a new
call arrives and multiple units are available, dispatch the
closest unit to the call. Therefore, two complete ambulance
dispatching policies are now available: greedy policy (greedy
in both call- and ambulance-initiated decisions) and centrality
policy (greedy in call-initiated decisions and based on central-
ity in ambulance-initiated decisions).

III. Parallelism

The centrality policy significantly reduces response time by
up to 86% over the greedy policy [14], [15]. The centrality
policy, however, takes into account only idle units despite the
possibility that a busy unit can respond more quickly even
after the completion of currently assigned service. There is
an opportunity here to further improve the centrality policy
by incorporating both idle and busy units in parallel. The
parallelized centrality policy is presented in five steps as
follows, along with an illustrative example in Fig. 2(a) in
which there are two busy {a1, a2} and one idle {a3} units, two
assigned {c1, c2} and five unassigned {c3, c4, c5, c6, c7} calls,
and a hospital. The unit a3 just got freed and a decision needs
to be made here on the selection of a call among unassigned
calls (if appropriate).

1) When making either a call-initiated or ambulance-
initiated decision, identify all unassigned calls U and
all idle/busy units V = V idle ∪ V busy.

Fig. 3. Call distribution patterns. (a) Uniform. (b) Centered. (c) Cornered.
(d) Bipartite.

Fig. 2(a): Unit a3 gets freed. There are five calls waiting,
U = {c3, c4, c5, c6, c7}, and one idle and two busy units,
V idle = {a3}, V busy = {a1, a2}, V = {a1, a2, a3}.

2) Compute centrality cu of each call u ∈ U upon the
network of calls U with the edge between every pair
of calls having a value of distance τui(in time) between
them

cu =
∑

i∈U,i�=u

1

(1 + τui)
. (4)

Fig. 2(b): The centrality of each call is computed upon
the network of calls U = {c3, c4, c5, c6, c7}, assuming
every edge length of the grid in Fig. 2(a) is 1 m.

3) Compute fitness f vu between a unit v ∈ V and a call
u ∈ U, based on the centrality cu, weighted by parameter
α (≥0), and expected response time tvu for the unit v to
reach the call site u including, if any, the time expected
to be spent on the already assigned call

fvu =
cα
u

(1 + tvu)
. (5)

Fig. 2(c) and (d): Assuming onsite service time = 1 m,
hospital−prob = 0.7, and units are discharged immedi-
ately after arrival to hospital, the expected response time
[Fig. 2(c)] and fitness [Fig. 2(d)] are computed for each
pair between V = {a1, a2, a3} and U = {c3, c4, c5, c6, c7}
with α=0.3.

4) Establish a one-to-one assignment by prioritizing the
matches with larger fitness.
Fig. 2(d): First, the match a2-c5 is chosen (f 25 is among
the largest), second, a3-c6 (f 36 is the largest after exclud-
ing matched units and calls, a2 and c5), and third, a1-c4
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(f 14 is the largest after excluding all matched ones, a2,
a3, c5, c6), resulting in a one-to-one assignment.

5) Dispatch the idle units to their matched calls (if any)
and leave unassigned the calls matched to busy units
(without reservation).
Fig. 2(e): The idle unit a3 is dispatched to its matched
call c6, and other calls {c3, c4, c5, c6} remain unas-
signed.

Step 1 considers all units (both idle and busy) and all
unassigned calls when making a dispatching decision (either
call-initiated or ambulance-initiated). The expected response
time in Step 3 now includes the time expected to be spent on
the currently assigned call (if any) as well, since busy units are
also taken into consideration. The calculation of response time,
therefore, requires a certain assumption on hospital selection,
i.e., selecting one of hospitals available when transferring a
patient to hospital (note that the parallelized centrality policy
is operable along with any hospital selection policy as long
as the expected response time is computable, and further
details on hospital selection will be discussed in Section VI).
The assignment problem in step iv is to make a one-to-one
assignment that prioritizes matches with higher fitness score
in order to pursue exploitation under uncertainty of future. The
assignment solution has two types of matches. One is those
between a busy unit and a call, and the other between an idle
unit and a call. The matches of latter type are immediately
executed; however, those calls matched to busy units remain
unassigned with no reservation since better matches may arise
in the future (see Step 5).

The execution of the parallelized centrality policy, in gen-
eral, results in an assignment problem between multiple units
and multiple calls. For example, suppose a new call arrives
and multiple units are idle at the time, and the policy does not
assign an idle unit to the call because a busy unit can respond
to the call more quickly. Then, when another call arrives,
two unassigned calls will be present at the same time whilst
several idle units exist. Therefore, the boundary of call- and
ambulance-initiated decisions becomes blurred. Also, note that
keeping idle units idle in spite of the presence of waiting calls
helps enhance preparedness by preventing units from being
unnecessarily concentrated in a local region. However, if calls
are dense in a certain area beyond its service capacity, idle
units will be anyway dispatched to that area according to the
assignment mechanism.

The parallelized centrality policy is exactly same as the cen-
trality policy when V = V idle, and it becomes the greedy policy
if V = V idle and α = 0. Also, let us call a special case of the
parallelized centrality policy as the Parallelism Policy when
only the parallelism is taken into account without centrality,
i.e. when V = V idle ∪ V busy and α = 0. The parallelism policy
is the application of parallelism to the greedy policy whereas
the parallelized centrality policy is the one to the centrality
policy.

IV. Performance Evaluation

In this section, the parallelism is evaluated in various scenar-
ios implemented in a discrete event simulator, by performance

enhancement upon two policies: greedy policy and centrality
policy.

A. Experiment Design

The service area is represented in a 5*5 square grid as
shown in Fig. 3. Each vertex generates calls and ambulances
move from vertex to vertex through edges. Once dispatched to
a call site, the ambulance serves the patient with a service time
(onsite time) that is exponentially distributed [32], [33]. The
ambulance then, with a probability of hospital−prob, transfers
the patient to a hospital located in the center of the grid, and
the unit is discharged from the hospital after a certain period
of time (turnaround time) that is exponentially distributed.

Four factors are associated with constructing different test
conditions: 1) call distribution pattern; 2) size of ambulance
fleet; 3) hospital−prob; and 4) time parameters. Total 12 500
calls are generated at a certain rate from an exponential distri-
bution [13], [33], [34], and they are placed in the vertices ac-
cording to one of four call distribution patterns in Fig. 3(a)–(d).
A value in the figure represents the probability to allocate a
call to a corresponding vertex. For example, in the cornered
pattern, each vertex located in a corner gets an arriving
call with probability 0.1. The four call patterns are designed
to reflect various possible scenarios in reality. The size of
ambulance fleet is in {2, 3, 4, 5} (the parallelism is of no
effect when the size is one; therefore this case is excluded),
and the ambulances in each simulation run are initially located
at random positions. The hospital−prob (i.e., probability of
transferring patient to hospital), ranges in 0∼1 with an in-
crement of 0.1. There are four time-related parameters, < call
arrival interval, edge length, onsite time, turnaround time >,
and two parameter sets are used, < 1, 1, 0.5, 0> and < 10, 5,
17, 40 >, all expressed in minutes (including edge length).
The first set is from the experimental setting used in [14]
and the second set is from [15]. Especially the parameters of
onsite time and turnaround time in the second set are from the
statistics collected in several empirical analyses [35]–[37].

As a result, 352 test conditions (4 call distribution patterns
* 4 sizes of ambulance fleet * 11 hospital−prob * 2 parameter
sets) are established. For each test condition, four dispatching
policies are applied: greedy policy, centrality policy, paral-
lelism policy, and parallelized centrality (p-centrality) policy.
The weight on centrality, α, used in centrality policy and
parallelized centrality policy is set to 1-hospital−prob as it
is suggested as a heuristic approach in [15]. Fifty simulation
runs are replicated for each test scenario.

B. Performance Enhancement

Table I shows a summary of results in terms of average
reduction in response time of a policy (B) over another policy
(A) (represented in A: B), i.e., average reduction in response
time of B over A = (average response time with A − average
response time with B)/(average response time with A). As
can be observed in the table, the parallelism reduces response
time by up to 43.4% over greedy and centrality policies (max-
imums in Greedy: Parallelism and Centrality: P-Centrality).
However, there are some cases where the parallelism has a
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TABLE I

Average Reduction in Response Time

Average reduction in response time of B over A = (average response time with A – average response time with B)/(average response time with A)

TABLE II

Frequency of Reduction in Average Response Time

E: A and B are equivalent. A: A is better (lower in average response time) than B. B: B is better (lower in average response time) than A

negative effect, increasing response time by 20.5% in the
worst case (minimums in Greedy: Parallelism and Centrality:
P-Centrality). To examine the frequency of this negative effect,
a statistical testing (t-test) is conducted for the significance in
the difference of two policies (say A and B) with significance
level set at 0.05. Table II presents the frequencies of being
equivalent (E), having A better (A), and having B better (B).
As can be noticed, the effect of parallelism is negative only in
5 out of 704 cases (<1%) (Greedy: Parallelism and Centrality:
P-Centrality), while being positive in 246 cases (35%), well
supporting the potential of parallelism in reducing response
time.

When comparing Greedy: Centrality and Greedy:
P-Centrality in Table I, the effect of parallelism does
not seem eminent (due to similar ranges, −2.1∼89.6%
and −1.9∼89.9%), though its benefits look considerable in
Table II (increasing positive cases from 31.5% to 56.5%).
This is due to the fact that the parallelism has a characteristic
of effecting especially low-load conditions where centrality
is not very useful. Fig. 4 shows the average reduction in
response time of three policies (centrality, parallelism, and
p-centrality) over the greedy policy, from the test condition
with uniform call pattern and parameter set < 1, 1, 0.5, 0 >
(Note that the overall pattern is similar in other conditions
as well). In high-load conditions (small size of fleet and
high hospital−prob), calls are queued everywhere and idle
units are likely to be assigned to the calls in vicinity
regardless of whether busy units are considered or not. This
characteristic of the parallelism (being more effective in
low-load conditions) complements the centrality that does not
have significant impact in low-load conditions (large size of

fleet and low hospital−prob). The centrality alone is not very
useful in such low-load conditions since most decisions are
call-initiated. Therefore, once centrality is synthesized with
parallelism, the performance gets enhanced in both low and
high load conditions.

C. Performance Variation

Coverage level is another measure that can be used in eval-
uating dispatching policies, where coverage level corresponds
to the percentage of calls responded to within a given response
time threshold. However, various definitions exist for the
response time threshold depending on factors such as country,
urbanization, and urgency, ranging in 7–30 m [9], [38]–[43].
Also, the coverage level would make no difference in patient
outcomes among scenarios within or beyond a threshold,
though significant differences exist [44]. Therefore, rather than
evaluating according to a specific threshold, the policies can
be evaluated by variation of response time in conjunction
with average performance. Average standard deviation is used
to measure the variation of response time. Table III shows
a summary of the reduction in variation, Table IV presents
the frequency of reduction in variation by a statistical testing
(F-test) with significance level set at 0.05, and Fig. 5 shows the
reduction in variation of the policies over the greedy policy,
similarly to the previous section but on variation data. The
overall pattern in variation is similar to the one in average
response time, i.e., the less the average response time is, the
less the variation is, supporting the significance of parallelism
even in reducing the variation.

The reduction in both average and variation implies that
the policy equipped with parallelism is likely to have a
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Fig. 4. Average reduction in response time over greedy policy—uniform call pattern, parameter set < 1, 1, 0.5, 0 >. (a) 2 units. (b) 3 units. (c) 4 units.
(d) 5 units.

TABLE III

Reduction in Variation

Reduction in variation of B over A = (variation with A – variation with B) / (variation with A)

better coverage level for any response time threshold and
mitigate the risk of exposing patients to excessively tardy
responses. However, there are several instances in which the
parallelism has a negative effect (increasing response time
and/or variation). This means that the way of applying the
parallelism needs to be more robust to different operational
conditions, and the next section introduces a rule for activating
parallelism by adding a new calibration parameter within the
policy.

V. Activation Rule of Parallelism

There could be situations where the parallelism makes per-
formance even worse, in which cases it is better to deactivate
it. This section provides an activation rule of the parallelism

and incorporates it into the parallelized centrality policy by
adding a new calibration parameter β. The parallelism pa-
rameter β serves as a threshold of activating the parallelism
in terms of the number of unassigned calls. The short-term
nature of the assignment process ignoring multihop routes
could lead to solutions far from being optimal especially when
the uncertainty of dynamics gets increased due to the presence
of a large number of calls and involvement of busy units. The
parallelism therefore would be better to be deactivated when
there are unassigned calls over a certain limit and in such a
case only idle units are considered.

The parallelized centrality policy presented in Section III
is transformed into a policy that has two calibration param-
eters (centrality parameter α and parallelism parameter β) as
follows.
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TABLE IV

Frequency of Reduction in Variation

E: A and B are equivalent. A: A is better (lower in variation) than B. B: B is better (lower in variation) than A

Fig. 5. Reduction in variation over greedy policy—uniform call pattern, parameter set < 1, 1, 0.5, 0 >. (a) 2 units. (b) 3 units. (c) 4 units. (d) 5 units.

1) When making either a call-initiated or ambulance-
initiated decision, identify all unassigned calls U and, if
|U| ≤ β, all idle/busy units V = V idle ∪ V busy, otherwise
only idle units V = V idle.

2) Compute centrality cu of each call u ∈ U upon the
network of calls U with the edge between every pair
of calls having a value of distance τui (in time) between
them

cu =
∑

i∈U,i �=u

1

(1 + τui)
. (6)

3) Compute fitness f vu between a unit v ∈V and a call
u ∈ U based on the centrality cu weighted by parameter

α (≥0) and expected response time tvu for the unit v to
reach the call site u including, if any, the time expected
to be spent on the already assigned call

fvu =
cα
u

(1 + tvu)
. (7)

4) Establish an one-to-one assignment by prioritizing the
matches with larger fitness.

5) Dispatch the idle units to their matched calls (if any)
and leave unassigned the calls matched to busy units
(without reservation).

The only change made is in Step 1 where the parallelism
parameter β is applied as activation threshold. Two calibration
parameters (α and β) are now associated with the parallelized
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Fig. 6. Effect of calibration parameters α and β—uniform call pattern, parameter set < 1, 1, 0.5, 0 >. (a) 3 units β = 0. (b) 5 units β = 0. (c) 3 units α = 0.
(d) 5 units α = 0.

centrality policy, and all other three policies (greedy, cen-
trality, and parallelism) can be instantiated from this policy
by adjusting these parameters: α = 0 and β = 0 → greedy
policy, β = 0 → centrality policy, and α = 0 and β = ∞
→ parallelism policy. The calibration parameters are closely
related to the performance of the policy. For example, Fig. 6
shows that the effect of centrality parameter α (by setting β

= 0) and parallelism parameter β (by fixing α = 0) in terms
of average reduction in response time over greedy policy, in
uniform call pattern and with parameter set < 1, 1, 0.5, 0 >.
The improvement by centrality [Fig. 6(a) and (b)] is significant
even with a small weight, and after reaching the peak the
improvement keeps going down toward negative improvement
(i.e., increase in response time). As discussed in Section II, if
centrality is too much pursued, the units will travel excessively
just for repositioning purpose without enough exploitation of
calls in vicinity. The performance improvement by parallelism
[Fig. 6(c) and (d)] tends to be larger as the parameter β

increases (in other words, as the parallelism is more incorpo-
rated). In some cases, however, highly irregular patterns can
be observed with sometimes falling even into negative region.

The nonlinear behaviors with the two calibration param-
eters give rise to the need for carefully choosing the right
values according to the operating environment, in order to
maximize the benefits of centrality and parallelism principles.
The right choice of the parameter values would be affected by
various factors such as information uncertainty, probability of
transferring to hospital, size of service area, size of fleet, call

distribution pattern, onsite service time, turnaround time, and
so on.

VI. Conclusion and Future Work

A notion of parallelism is developed for ambulance dis-
patching decisions that allow considering both idle and busy
units in parallel rather than just idle ones. The parallelism,
applied upon the centrality policy, results in the parallelized
centrality policy complementing and enhancing the centrality
policy in average as well as variation of response time. The
parallelized centrality policy involves two calibration param-
eters, centrality parameter and parallelism parameter, which
enable to achieve portable performance adaptively to various
operational scenarios. In order to maximize the benefits of
the policy, the parameter values have to be carefully chosen
according to the characteristics of the operating environment
factoring in such as information uncertainty, probability of
transferring to hospital, size of service area, size of fleet, and
call distribution pattern.

The calibration process of identifying the best parame-
ter values, however, is quite laborious and computationally
demanding. Moreover, the parameters, in general, strongly
depend on each problem instance and thus the calibration
process has to be repeated for each problem instance. There-
fore, optimal parameter matching rules need to be explored
through theoretical and experimental analyses that relate the
characteristics of operational scenarios to the best parameter
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values, so that users can be guided by the rules in choosing
appropriate parameter values for the scenarios of interest. The
parameter matching process would require utilizing statistical
analysis and data mining techniques that have been proven
useful, referring to the research on parameter calibration
[45]–[51].

The parallelism can be adapted and applied to the
priority dispatching systems which prioritize ambulance calls
in accordance with their degree of urgency. In case the
parallelism is directly applied to such systems, an idle unit
may keep being idle in spite of the presence of high-priority
patients (with life-threatening symptoms), which would be
politically impossible or subject to lawsuit. One way of
overcoming such problematic situations is to first apply the
parallelism policy or parallelized centrality policy among
unassigned high-priority calls and idle units only (excluding
busy units), and then apply the policy to the calls with lower
priorities involving both idle and busy units. The high-priority
calls then will be always assigned an idle ambulance (if any).
Various approaches of adapting the parallelism principle can
be devised, and an extensive research is required to evaluate
them with respect to EMS regulations and performance.

Another interesting research topic is on hospital selection
which is also necessary in calculating expected response time
of busy units in the parallelized centrality policy. The hospital
selection decision determines an appropriate hospital when
transferring a patient to hospital, and it is closely associated
with logistics efficiency because it influences the availability
of ambulances to other patients. An ambulance becomes
unavailable during the transfer time consisting of transporta-
tion time (from the scene to a hospital) and turnaround time
(interval between arrival at the hospital and the time the
ambulance becomes available to respond to another call). The
majority of patients are, in reality, transferred to the nearest
hospital [52], [53]. However, crowding in the ED has a direct
impact on the transfer time due to the delay caused by the
lack of resources (space, bed, personnel, and so on) [54]. One
popular technique used to avoid crowding is the ambulance
diversion that incoming ambulances are redirected to nearby,
less crowded EDs. Approximately 500 000 ambulances are
diverted annually in the U.S. [55]. Although ambulance
diversion can reduce crowding, it can increase the transfer
time of the patients being diverted and can reduce the
availability of ambulances [56]. Sprivulis and Gerrard [57]
and Larson [58] describe the use of real-time information on
ED status (occupied spaces, emergency inpatients, waiting
room patients, and so on) which helps EMS crew make more
informed decisions with significant decreases in diversion
hours and a more balanced workload between hospitals.

Advanced hospital selection policies can be composed based
on various factors discussed above. It would be also meaning-
ful to investigate the interactions of potential hospital selection
policies with the parallelism. For example, even though a
hospital selection policy is better than another without paral-
lelism (i.e. considering only idle units), it can result in worse
performance with parallelism (i.e., considering both idle and
busy units), when the projected response times of busy units
are subject to large variability and/or inaccuracy.
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